Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 29

Answer

$(6,0),(-6,0),(0,-6)$

Work Step by Step

$x^{2}+y^{2} = 36$ Equation $(1)$ $y=\frac{1}{6}x^{2}-6$ Equation $(2)$ From Equation $(2)$ $y=\frac{1}{6}x^{2}-6$ Taking LCD, $y=\frac{x^{2}-36}{6}$ $6y=x^{2}-36$ $6y+36=x^{2}$ Equation $(3)$ Substituting $x^{2}=6y+36$ in Equation $(1)$ $x^{2}+y^{2} = 36$ $6y+36+y^{2} = 36$ $y^{2}+6y+36- 36=0$ $y^{2}+6y=0$ $y(y+6)=0$ $y=0$ or $y=-6$ Substituting $y$ values in Equation $(3)$ to get $x$ Let $y=0$ $x^{2}=6y+36$ $x^{2}=6(0)+36$ $x^{2}=36$ $x=±6$ Let $y=-6$ $x^{2}=6y+36$ $x^{2}=6(-6)+36$ $x^{2}=-36+36$ $x^{2}=0$ $x=0$ $(6,0),(-6,0),(0,-6)$ satisfy the given equations. The solutions are $(6,0),(-6,0),(0,-6)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.