Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 22

Answer

$\{ (2,0),(-2,0)\}$

Work Step by Step

$x^{2}+2y^{2} =4$ Equation $(1)$ $x^{2}-y^{2} =4$ Equation $(2)$ Multiply Equation $(2)$ by $2$ then add with Equation $(1)$ $2(x^{2}-y^{2}) +x^{2}+2y^{2} =2(4)+4$ $2x^{2}-2y^{2} +x^{2}+2y^{2} =8+4$ $3x^{2}=12$ $x^{2}=4$ $x=±2$ $x= 2$ or $x=-2$ Substitute $x$ values in Equation $(2)$ Let $x= 2$ $x^{2}-y^{2} =4$ $2^{2}-y^{2} =4$ $4-y^{2} =4$ $y^{2} =4-4$ $y^{2} =0$ $y =0$ Let $x= -2$ $x^{2}-y^{2} =4$ $(-2)^{2}-y^{2} =4$ $4-y^{2} =4$ $y^{2} =4-4$ $y^{2} =0$ $y =0$ $(2,0),(-2,0)$ satisfy both equations. Solution set is $\{ (2,0),(-2,0)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.