Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 26

Answer

$(4,3),(4,-3),(-5,0)$

Work Step by Step

$x^{2}+y^{2} =25$ Equation $(1)$ $x=y^{2}-5$ Equation $(2)$ From Equation $(2)$ $y^{2}=x+5$ Equation $(3)$ Substituting $y^{2}=x+5$ in Equation $(1)$ $x^{2}+y^{2} =25$ $x^{2}+x+5 =25$ $x^{2}+x+5 -25=0$ $x^{2}+x-20=0$ By factoring, $(x-4)(x+5)=0$ $x=4$ or $x=-5$ Substitute $x$ values in Equation $(3)$ to get $y$ Let $x=4$ $y^{2}=x+5$ $y^{2}=4+5$ $y^{2}=9$ $y=±3$ $y=3$ or $y=-3$ Let $x=-5$ $y^{2}=x+5$ $y^{2}=-5+5$ $y^{2}=0$ $y=0$ $(4,3),(4,-3),(-5,0)$ satisfy the given equations. The solutions are $(4,3),(4,-3),(-5,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.