Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 7

Answer

$(\sqrt 5,2),(-\sqrt 5,2),(\sqrt 5,-2),(-\sqrt 5,-2)$

Work Step by Step

$x^{2}+y^{2} = 9$ Equation $(1)$ $16x^{2}-4y^{2} = 64$ Equation $(2)$ Multiply Equation $(1)$ by $4$ and add with Equation $(2)$ $4(x^{2}+y^{2}) + 16x^{2}-4y^{2}= 4 \times 9 +64$ $4x^{2}+4y^{2} + 16x^{2}-4y^{2}= 36 +64$ $20x^{2}= 100$ $x^{2}= 5$ $x = ±\sqrt 5$ $x = \sqrt 5$ or $x = -\sqrt 5$ Substitute $ x$ values in Equation $(1)$ Let $x = \sqrt 5$ $x^{2}+y^{2} = 9$ $(\sqrt 5)^{2}+y^{2} = 9$ $5+y^{2} = 9$ $y^{2} = 9-5$ $y^{2} = 4$ $y = ±\sqrt 4$ $y = ±2$ Let $x = -\sqrt 5$ $x^{2}+y^{2} = 9$ $(-\sqrt 5)^{2}+y^{2} = 9$ $5+y^{2} = 9$ $y^{2} = 4$ $y = ±2$ $(\sqrt 5,2),(-\sqrt 5,2),(\sqrt 5,-2),(-\sqrt 5,-2)$ all four ordered pair satisfy the given equations. So, the solutions are $(\sqrt 5,2),(-\sqrt 5,2),(\sqrt 5,-2),(-\sqrt 5,-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.