Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 2

Answer

Solution set: $\{(4,-3),(-4,3)\}$

Work Step by Step

$x^{2}+y^{2}=25$ Equation $(1)$ $3x+4y=0$ Equation $(2)$ From Equation $(2)$ $4y = -3x$ $y = -\frac{3x}{4}$ Equation $(3)$ Substituting $y = -\frac{3x}{4}$ in Equation $(1)$ $x^{2}+y^{2}=25$ $x^{2}+( -\frac{3x}{4})^{2}=25$ $x^{2}+(\frac{9x^{2}}{16})=25$ Taking LCD, $(\frac{16x^{2}+9x^{2}}{16})=25$ $9x^{2}+16x^{2}=25 \times16$ $25x^{2}=25 \times 16$ $x^{2}= 16$ $x = ±4$ $x = 4$ or $x=-4$ Substitute $ x$ values in Equation $(3)$ to get $y$, Let $x = 4 $ $y = -\frac{3x}{4}$ $y = -\frac{3}{4} \times 4$ $y = -3$ Let $x = -4 $ $y = -\frac{3x}{4}$ $y = -\frac{3}{4} \times -4$ $y = 3$ $(4,-3)$ and $(-4,3)$ satisfies both equations. So, the solution set is $\{(4,-3),(-4,3)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.