Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 19

Answer

$(1,2),(1,-2),(-1,2),(-1,-2)$

Work Step by Step

$2x^{2}+3y^{2} =14$ Equation $(1)$ $-x^{2}+y^{2} =3$ Equation $(2)$ Multiply Equation $(2)$ by $2$ and add with Equation $(1)$ $2(-x^{2}+y^{2} )+2x^{2}+3y^{2}=2(3)+14$ $-2x^{2}+2y^{2} +2x^{2}+3y^{2}=6+14$ $5y^{2}=20$ $y^{2}=4$ $y= ±2$ $y=2$ or $y=-2$ Substitute $y$ values in Equation $(1)$ Let $y=2$ $2x^{2}+3y^{2} =14$ $2x^{2}+3(2)^{2} =14$ $2x^{2}+12 =14$ $2x^{2} =14-12$ $2x^{2} =2$ $x^{2} =1$ $x= ±1$ Let $y=-2$ $2x^{2}+3y^{2} =14$ $2x^{2}+3(-2)^{2} =14$ $2x^{2}+3(4) =14$ $2x^{2}+12 =14$ $2x^{2} =14-12$ $2x^{2} =2$ $x^{2} =1$ $x= ±1$ $(1,2),(1,-2),(-1,2),(-1,-2)$ satisfy both the equations. So the solution set is $\{(1,2),(1,-2),(-1,2),(-1,-2)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.