Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 20

Answer

$(\sqrt 3,\sqrt 5),(-\sqrt 3,\sqrt 5),(\sqrt 3,-\sqrt 5),(-\sqrt 3,-\sqrt 5)$

Work Step by Step

$4x^{2}-2y^{2} =2$ Equation $(1)$ $-x^{2}+y^{2} =2$ Equation $(2)$ Multiply Equation $(2)$ by $4$ and add with Equation $(1)$ $4(-x^{2}+y^{2})+4x^{2}-2y^{2} =4(2)+2$ $-4x^{2}+4y^{2}+4x^{2}-2y^{2} =8+2$ $2y^{2} =10$ $y^{2} =5$ $y=±\sqrt 5$ $y=\sqrt 5$ or $y=-\sqrt 5$ Substitute $y$ values in Equation $(1)$ $y=\sqrt 5$ $4x^{2}-2y^{2} =2$ $4x^{2}-2(\sqrt 5)^{2} =2$ $4x^{2}-2(5) =2$ $4x^{2}-10 =2$ $4x^{2}=2+10$ $4x^{2}=12$ $x^{2}=3$ $x=±\sqrt 3$ $y=-\sqrt 5$ $4x^{2}-2y^{2} =2$ $4x^{2}-2(-\sqrt 5)^{2} =2$ $4x^{2}-2(5) =2$ $4x^{2}-10 =2$ $4x^{2}=2+10$ $4x^{2}=12$ $x^{2}=3$ $x=±\sqrt 3$ $(\sqrt 3,\sqrt 5),(-\sqrt 3,\sqrt 5),(\sqrt 3,-\sqrt 5),(-\sqrt 3,-\sqrt 5)$ satisfy both the equations. So the solution set is $\{(\sqrt 3,\sqrt 5),(-\sqrt 3,\sqrt 5),(\sqrt 3,-\sqrt 5),(-\sqrt 3,-\sqrt 5)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.