Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 1

Answer

$(3,-4),(-3,4)$

Work Step by Step

$x^{2}+y^{2}=25$ Equation $(1)$ $4x+3y=0$ Equation $(2)$ From Equation $(2)$ $3y = -4x$ $y = -\frac{4x}{3}$ Equation $(3)$ Substituting $y = -\frac{4x}{3}$ in Equation $(1)$ $x^{2}+y^{2}=25$ $x^{2}+(-\frac{4x}{3})^{2}=25$ $x^{2}+(\frac{16x^{2}}{9})=25$ Taking LCD, $(\frac{9x^{2}+16x^{2}}{9})=25$ $9x^{2}+16x^{2}=25 \times 9$ $25x^{2}=25 \times 9$ $x^{2}= 9$ $x = ±3$ $x = 3 $ or $x=-3$ Substitute $ x$ values in Equation $(3)$ to get $y$. Let $x = 3 $ $y = -\frac{4x}{3}$ $y = -\frac{4}{3} \times 3$ $y = -4$ Let $x = -3 $ $y = -\frac{4x}{3}$ $y = -\frac{4}{3} \times -3$ $y = 4$ $(3,-4)$ and $(-3,4)$ satisfies both equations. So, the solution set is $\{(3,-4),(-3,4)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.