Answer
The solutions are $x=-4$ and $x=3$.
Work Step by Step
The given equation is
$\Rightarrow x^2+x-12=0$
The equation is easily factorable. So, solve by factoring.
$\Rightarrow x^2+x-12=0$
Rewrite $x$ as $4x-3x$.
$\Rightarrow x^2+4x-3x-12=0$
Group the terms.
$\Rightarrow (x^2+4x)+(-3x-12)=0$
Factor each group.
$\Rightarrow x(x+4)-3(x+4)=0$
Factor out $(x+4)$.
$\Rightarrow (x+4)(x-3)=0$
Use zero-product property.
$\Rightarrow x+4=0$ or $x-3=0$
Solve for $x$.
$\Rightarrow x=-4$ or $x=3$
Hence, the solutions are $x=-4$ and $x=3$.