Answer
$x\approx -0.3$ and $x\approx-0.8$
Work Step by Step
$8x^{2}+8=6-9x\implies 8x^{2}+8+9x-6=0$
$\implies 8x^{2}+9x+2=0$
Comparing $8x^{2}+9x+2=0$ with $ax^{2}+bx+c=0$, we get $a=8$, $b=9$ and $c=2$.
The quadratic formula is $x=\frac{-b \pm \sqrt {b^{2}-4ac}}{2a}$
Substituting the values, we get
$x=\frac{-(9) \pm \sqrt {(9)^{2}-4(8)(2)}}{(2)(8)}=\frac{-9\pm \sqrt {17}}{16}$
The solutions of the equation are $x=\frac{-9+\sqrt {17}}{16}\approx -0.3$ and $x= \frac{-9-\sqrt {17}}{16}\approx-0.8$