Answer
$x\approx1.1$ and $x\approx-0.3$
Work Step by Step
$5x^{2}-2=4x\implies 5x^{2}-4x-2=0$
Comparing $5x^{2}-4x-2=0$ with $ax^{2}+bx+c=0$, we get
$a=5$, $b=-4$ and $c=-2$.
The quadratic formula is $x=\frac{-b \pm \sqrt {b^{2}-4ac}}{2a}$ Substituting the values, we get $x=\frac{-(-4) \pm \sqrt {(-4)^{2}-4(5)(-2)}}{(2)(5)}=\frac{4\pm \sqrt {56}}{10}=\frac{2\pm\sqrt {14}}{5}$ The solutions of the equation are $x=\frac{2+\sqrt {14}}{5}\approx1.1$ and $x= \frac{2-\sqrt {14}}{5}\approx-0.3$