Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Foundations - Topic B - Energy - Exercises - Page 24: B.1(a)

Answer

(a) (i) $v = 9.8 \space m/s$ and $E_k = 0.048 \space J$ (ii) $v = 29 \space m/s$ and $E_k = 0.43 \space J$

Work Step by Step

Free fall: $$r = r_0 + v_0t + \frac 12 at^2$$ $$v = \frac{dr}{dt} = v_0 + at$$ In this case: $v_0 = 0$ $$v = at$$ (i) $$v = at \longrightarrow v = (9.81 \space m/s^2)(1.0 \space s) = 9.81 \space m/s =* 9.8 \space m/s$$ $$E_k = \frac 12 mv^2 = \frac 12 (1.0 \space g)(9.81 \space m/s)^2 = 48 \space g \space m^2/s^2 \times \frac{1 \space kg}{1000 \space g} = 0.048 \space kg \space m^2/s^2 = 0.048 \space J$$ (ii) $$v = at \longrightarrow v = (9.81 \space m/s^2)(3.0 \space s) = 29.43 \space m/s =* 29 \space m/s$$ $$E_k = \frac 12 mv^2 = \frac 12 (1.0 \space g)(29.43 \space m/s)^2 = 430 \space g \space m^2/s^2 \times \frac{1 \space kg}{1000 \space g} = 0.43 \space kg \space m^2/s^2 = 0.43 \space J$$ * Correct number of significant figures.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.