Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Foundations - Topic B - Energy - Exercises - Page 24: B.2(a)

Answer

$\frac{zeE}{6πηR}$

Work Step by Step

There are two forces acting on the ion: $1.$ The electrostatic force $(zeE)$ directed vertically downward, $2.$ and the drag force $(6πηRs)$ directed vertically upward. Now, according to Newton’s second law of motion, $m\frac{ds}{dt}=zeE-6πηRs$ or, $\frac{ds}{dt}=\frac{zeE}{m}-\frac{6πηRs}{m}$ ..............$(1)$ where, $m$ is the mass of the ion. Let, $k=\frac{zeE}{m}$ and $\gamma=\frac{6πηR}{m}$. Then eq, $1$ becomes $\frac{ds}{dt}=k-\gamma s $ or, $\frac{ds}{dt}=-\gamma(s-\frac{k}{\gamma})$ or, $\frac{ds}{(s-\frac{k}{\gamma})}=-\gamma dt$ Integrating both side, we get $\int_{0}^{s(t)}\frac{ds}{(s-\frac{k}{\gamma})}=-\gamma\int_{0}^{t}dt$ or, $\ln \bigg({\frac{s(t)-\frac{k}{\gamma}}{-\frac{k}{\gamma}}}\bigg)=-\gamma t$ or, ${\frac{s(t)-\frac{k}{\gamma}}{-\frac{k}{\gamma}}}=e^{-\gamma t}$ or, $s(t)=\frac{k}{\gamma}(1-e^{-\gamma t})$ or, $s(t)=\frac{\frac{zeE}{m}}{\frac{6πηR}{m}}(1-e^{-\frac{6πηR}{m} t})$ or, $s(t)=\frac{zeE}{6πηR}(1-e^{-\frac{6πηR}{m} t})$ For large values of $t$ $(t\to \infty )$ , the term $e^{\frac{6πηR}{m} t}\to0$, and the ion reaches a terminal velocity: $s_\infty=\frac{zeE}{6πηR}$ Therefore, the terminal velocity of the ion is given by $\frac{zeE}{6πηR}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.