Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Foundations - Topic B - Energy - Exercises - Page 24: B.3(a)

Answer

The equation of motion of a harmonic oscillator is given by $m\frac{d^2x}{dt^2}=–k_fx$ or, $\frac{d^2x}{dt^2}=–\frac{k_f}{m}x$ or, $\frac{d^2x}{dt^2}=–\omega^2x$ $\bigg($where $\omega=\sqrt {\frac{k_f}{m}}$$\bigg)$ ..........$(1)$ Let $x=x_0e^{kt}$ is the solution of eq, $1$, where $A$ and $k$ are two constants Substituting $x=x_0e^{kt}$ in eq. $1$, we get $k^2x_0e^{kt}=-\omega^2x_0e^{kt}$ or, $k^2+\omega^2=0$ $(\because e^{kt}\ne0 )$ or, $k=±i\omega$ Thus, the solutions of eq. $1$ are $x_1=x_0^1e^{i\omega t}$ and $x_2=x_0^2e^{-i\omega t}$ Therefore, the general solution of eq. $1$ is given by $x=x_1+x_2$ or, $x=x_0^1e^{i\omega t}+x_0^2e^{-i\omega t}$ or, $x=x_0^1(\cos\omega t+i\sin\omega t)-x_0^2(\cos\omega t+i\sin\omega t)$ or, $x=(x_0^1+x_0^2)\cos\omega t+i(x_0^1-x_0^2)\sin\omega t$ or, $x=B\cos\omega t+A\sin\omega t$ or, $x=A\sin\omega t+B\cos\omega t$ where, $A=i(x_0^1-x_0^2)$ and $B=(x_0^1+x_0^2)$ are two constants.

Work Step by Step

The equation of motion of a harmonic oscillator is given by $m\frac{d^2x}{dt^2}=–k_fx$ or, $\frac{d^2x}{dt^2}=–\frac{k_f}{m}x$ or, $\frac{d^2x}{dt^2}=–\omega^2x$ $\bigg($where $\omega=\sqrt {\frac{k_f}{m}}$$\bigg)$ ..........$(1)$ Let $x=x_0e^{kt}$ is the solution of eq, $1$, where $A$ and $k$ are two constants Substituting $x=x_0e^{kt}$ in eq. $1$, we get $k^2x_0e^{kt}=-\omega^2x_0e^{kt}$ or, $k^2+\omega^2=0$ $(\because e^{kt}\ne0 )$ or, $k=±i\omega$ Thus, the solutions of eq. $1$ are $x_1=x_0^1e^{i\omega t}$ and $x_2=x_0^2e^{-i\omega t}$ Therefore, the general solution of eq. $1$ is given by $x=x_1+x_2$ or, $x=x_0^1e^{i\omega t}+x_0^2e^{-i\omega t}$ or, $x=x_0^1(\cos\omega t+i\sin\omega t)-x_0^2(\cos\omega t+i\sin\omega t)$ or, $x=(x_0^1+x_0^2)\cos\omega t+i(x_0^1-x_0^2)\sin\omega t$ or, $x=B\cos\omega t+A\sin\omega t$ or, $x=A\sin\omega t+B\cos\omega t$ where, $A=i(x_0^1-x_0^2)$ and $B=(x_0^1+x_0^2)$ are two constants.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.