Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Foundations - Topic B - Energy - Exercises - Page 24: B.3(b)

Answer

$\text{Total energy of the harmonic oscillator}$ $=\frac{1}{2}m\omega^2A^2$

Work Step by Step

The displacement $(x)$ of a harmonic oscillator at any instant can be written as $x=A\sin\omega t+B\cos\omega t$ In this problem, $B=0$, therefore $x=A\sin\omega t$ where $A$ is the s maximum displacement amplitude. $\therefore$ The velocity of the oscillator at that instant is given by $v=\frac{dx}{dt}$ or, $v=A\omega \cos\omega t$ Let $m$ be the mass of the oscillator. $\therefore$ Potential energy of the oscillator is $PE=\frac{1}{2}m\omega^2x^2$=$\frac{1}{2}m\omega^2A^2\sin^2\omega t$ and kinetic energy of the oscillator is $KE=\frac{1}{2}mv^2$=$\frac{1}{2}mA^2\omega^2\cos^2\omega t$ $\therefore$ $\text{Total energy of the harmonic oscillator}$ $=PE+KE$ $=\frac{1}{2}m\omega^2A^2\sin^2\omega t+\frac{1}{2}mA^2\omega^2\cos^2\omega t$ $=\frac{1}{2}m\omega^2A^2(\sin^2\omega t+\cos^2\omega t)$ $=\frac{1}{2}m\omega^2A^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.