Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 332: 96

Answer

$y=\frac{\sqrt C(x^2+1)^{\frac{1}{6}}}{(x)^{\frac{1}{4}}} $.

Work Step by Step

Given $2ln(y)=-\frac{1}{2}ln(x)+\frac{1}{3}ln(x^2+1)+ln(C) $, we have $ln(y)=-\frac{1}{4}ln(x)+\frac{1}{6}ln(x^2+1)+\frac{1}{2}ln(C) \Longrightarrow ln(y)=ln(x)^{-\frac{1}{4}}+ln(x^2+1)^{\frac{1}{6}}+ln(\sqrt C) \Longrightarrow ln(y)=ln\frac{\sqrt C(x^2+1)^{\frac{1}{6}}}{(x)^{\frac{1}{4}}} \Longrightarrow y=\frac{\sqrt C(x^2+1)^{\frac{1}{6}}}{(x)^{\frac{1}{4}}} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.