Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 332: 101

Answer

$\log _{a}(x+\sqrt{x^{2}-1})+\log _{a}(x-\sqrt{x^{2}-1})=\log_a{(x^2-}(x^2-1))=\log_a{1}=0$

Work Step by Step

Given: $\quad \log _{a}(x+\sqrt{x^{2}-1})+\log _{a}(x-\sqrt{x^{2}-1})=0$ Use the rules $\quad \log_aA+\log_aB=\log_a AB\quad$ and $\quad(a+b)(a-b)=a^2-b^2$ to simplify the LHS:: \begin{align*} \log _{a}(x+\sqrt{x^{2}-1})+\log _{a}(x-\sqrt{x^{2}-1})&=\log _{a}(x+\sqrt{x^{2}-1})(x-\sqrt{x^{2}-1})\\ &=\log _{a}\left(x^{2}-\left(\sqrt{\left(x^{2}-1\right)}\right)^{2}\right)\\ &=\log _{a}\left(x^{2}-(x^2-1)\right)\\ &=\log _{a}\left(x^{2}-x^2+1\right)\\ &=\log _{a}\left(1\right)\\ &=0 \quad\text{(since } \log_a{1}=0)\\ &=\text{RHS} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.