Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.5 Properties of Logarithms - 4.5 Assess Your Understanding - Page 332: 110

Answer

$\log_a{\left(\frac{1}{N}\right)}=\log_a{\left(N^{-1}\right)}=-1\cdot\log_a{N}=-\log_a{N}, a\ne1$

Work Step by Step

Recall: $(1)\quad \quad\dfrac{1}{N}=N^{-1}\\ (2) \quad \log_a{x^{m}}=m\log_a{x} $ Work on the LHS and use rule $(1)$ in the recall part above to obtain: $$ \begin{aligned} \log _{a}\left(\frac{1}{N}\right)&= \log _{a}\left(N^{-1}\right)\\ \\\text{Use rule (2) in the recall part above to obtain:} \\\log _{a}\left(\frac{1}{N}\right)&=-1 \log _{a} N \\=&-\log _{a} N \\=& R H S \end{aligned} $$ $$\therefore LHS=RHS$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.