Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 42

Answer

The roots of the equation are: \[\left\{ \frac{2}{3},1-\sqrt{5},1+\sqrt{5} \right\}\] Consider the given polynomial: \[3{{x}^{3}}-8{{x}^{2}}-8x+8=0\]

Work Step by Step

Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 4,\pm 8$ $q=\pm 1,\pm 2,\pm 3$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm 8,\pm \frac{1}{2},\pm \frac{1}{3},\pm \frac{2}{3},\pm \frac{4}{3},\pm \frac{8}{3}$ According to the Descartes’s rule of signs, the function $3{{x}^{3}}-8{{x}^{2}}-8x+8=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=3{{x}^{3}}-8{{x}^{2}}-8x+8 \\ & f\left( -x \right)=3{{\left( -x \right)}^{3}}-8{{\left( -x \right)}^{2}}-8\left( -x \right)+8 \\ & =3{{x}^{3}}-8{{x}^{2}}+8x+8 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. The function has only one sign change, thus the function has one negative real zero. Test $x=\frac{2}{3}$ as a root of the polynomial: $\begin{align} & f\left( x \right)=3{{x}^{3}}-8{{x}^{2}}-8x+8 \\ & f\left( \frac{2}{3} \right)=3{{\left( \frac{2}{3} \right)}^{3}}-8{{\left( \frac{2}{3} \right)}^{2}}-8\left( \frac{2}{3} \right)+8 \\ & =0 \end{align}$ Thus, $\left( x-\frac{2}{3} \right)$ is a factor of the polynomial. Divide the polynomial by $\left( x-\frac{2}{3} \right)$ $\frac{\left( 3{{x}^{3}}-8{{x}^{2}}-8x+8 \right)}{\left( x-\frac{2}{3} \right)}={{x}^{2}}-2x-4$ Thus, express the function as $f\left( x \right)=\left( x-\frac{2}{3} \right)\left( {{x}^{2}}-2x-4 \right)$. Equate $f\left( x \right)=\left( x-\frac{2}{3} \right)\left( {{x}^{2}}-2x-4 \right)$ to zero. $\begin{align} & \left( x-\frac{2}{3} \right)\left( {{x}^{2}}-2x-4 \right)=0 \\ & \left( x-\frac{2}{3} \right)\left( {{\left( x-1 \right)}^{2}}-5 \right)=0 \\ & x=\frac{2}{3},1-\sqrt{5},1+\sqrt{5} \end{align}$ The solution of the polynomial is $\left\{ \frac{2}{3},1-\sqrt{5},1+\sqrt{5} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.