Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 41

Answer

The roots of the polynomial equation are\[\left\{ -\frac{1}{2},\frac{1}{2}+\frac{\sqrt{17}}{2},\frac{1}{2}-\frac{\sqrt{17}}{2} \right\}\]

Work Step by Step

Consider the given polynomial $2{{x}^{3}}-{{x}^{2}}-9x-4=0$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 4$ $q=\pm 1,\pm 2$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm \frac{1}{2}$ According to the Descartes’ s rule of signs, the function $2{{x}^{3}}-{{x}^{2}}-9x-4=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=2{{x}^{3}}-{{x}^{2}}-9x-4 \\ & f\left( -x \right)=2{{\left( -x \right)}^{3}}-{{\left( -x \right)}^{2}}-9\left( -x \right)-4 \\ & =-2{{x}^{3}}-{{x}^{2}}+9x-4 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=\frac{-1}{2}$ as a root of the polynomial: $\begin{align} & f\left( x \right)=2{{x}^{3}}-{{x}^{2}}-9x-4 \\ & f\left( -\frac{1}{2} \right)={{\left( -\frac{1}{2} \right)}^{3}}+12{{\left( -\frac{1}{2} \right)}^{2}}+21\left( -\frac{1}{2} \right)+10 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x+\frac{1}{2} \right)$. $\frac{2{{x}^{3}}-{{x}^{2}}-9x-4}{x+\frac{1}{2}}={{x}^{2}}-x-4$ Thus, the polynomial can be expressed as $f\left( x \right)=\left( x+\frac{1}{2} \right)\left( {{x}^{2}}-x-4 \right)$. Equate $f\left( x \right)=\left( x+\frac{1}{2} \right)\left( {{x}^{2}}-x-4 \right)$ to zero. $\begin{align} & \left( x+\frac{1}{2} \right)\left( {{x}^{2}}-x-4 \right)=0 \\ & \left( x+\frac{1}{2} \right)\left( {{\left( x-\frac{1}{2} \right)}^{2}}-\frac{17}{4} \right)=0 \\ & x=-\frac{1}{2},\frac{1}{2}+\frac{\sqrt{17}}{2},\frac{1}{2}-\frac{\sqrt{17}}{2} \end{align}$ The solution of the polynomial is $\left\{ -\frac{1}{2},\frac{1}{2}+\frac{\sqrt{17}}{2},\frac{1}{2}-\frac{\sqrt{17}}{2} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.