Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 44

Answer

The roots of the polynomial are\[\left\{ -1,-1,3-i,3+i \right\}\]

Work Step by Step

Consider the given polynomial ${{x}^{4}}-4{{x}^{3}}-{{x}^{2}}+14x+10=0$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 5,\pm 10$ $q=\pm 1$ Calculate $\frac{p}{q}$ . $\frac{p}{q}=\pm 1,\pm 2,\pm 5,\pm 10$ According to the Descartes’s rule of signs, the function ${{x}^{4}}-4{{x}^{3}}-{{x}^{2}}+14x+10=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)={{x}^{4}}-4{{x}^{3}}-{{x}^{2}}+14x+10 \\ & f\left( -x \right)={{\left( -x \right)}^{4}}-4{{\left( -x \right)}^{3}}-{{\left( -x \right)}^{2}}+14\left( -x \right)+10 \\ & ={{x}^{4}}+4{{x}^{3}}-{{x}^{2}}-14x+10 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=-1$ as a root of the polynomial: $\begin{align} & f\left( x \right)={{x}^{4}}-4{{x}^{3}}-{{x}^{2}}+14x+10 \\ & f\left( -1 \right)={{\left( -1 \right)}^{4}}-4{{\left( -1 \right)}^{3}}-{{\left( -1 \right)}^{2}}+14\left( -1 \right)+10 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by ${{\left( x+1 \right)}^{2}}$. $\frac{\left( {{x}^{4}}-4{{x}^{3}}-{{x}^{2}}+14x+10 \right)}{{{\left( x+1 \right)}^{2}}}={{x}^{2}}-6x+10$ Thus, the function can be expressed as $f\left( x \right)={{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-6x+10 \right)$. Equate $f\left( x \right)={{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-6x+10 \right)$ to zero. $\begin{align} & {{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-6x+10 \right)=0 \\ & {{\left( x+1 \right)}^{2}}\left( x-\left( 3+i \right) \right)\left( x-\left( 3-i \right) \right)=0 \\ & x=-1,-1,3-i,3+i \end{align}$ The solution of the polynomial is $\left\{ -1,-1,3-i,3+i \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.