Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 48

Answer

The roots of the polynomial are\[\left\{ -\frac{5}{2},1,\sqrt{3},-\sqrt{3} \right\}\]

Work Step by Step

Consider the given polynomial $f\left( x \right)=2{{x}^{4}}+3{{x}^{3}}-11{{x}^{2}}-9x+15$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 3,\pm 5,\pm 15$ $q=\pm 1,\pm 2$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 3,\pm 5,\pm 15,\pm \frac{1}{2},\pm \frac{3}{2},\pm \frac{5}{2},\pm \frac{15}{2}$ According to the Descartes’s rule of signs, the function $f\left( x \right)=2{{x}^{4}}+3{{x}^{3}}-11{{x}^{2}}-9x+15$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=2{{x}^{4}}+3{{x}^{3}}-11{{x}^{2}}-9x+15 \\ & f\left( -x \right)=2{{\left( -x \right)}^{4}}+3{{\left( -x \right)}^{3}}-11{{\left( -x \right)}^{2}}-9\left( -x \right)+15 \\ & =2{{x}^{4}}-3{{x}^{3}}-11{{x}^{2}}+9x+15 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=1$ as a root of the polynomial: $\begin{align} & f\left( x \right)=2{{x}^{4}}+3{{x}^{3}}-11{{x}^{2}}-9x+15 \\ & f\left( 1 \right)=2{{\left( 1 \right)}^{4}}+3{{\left( 1 \right)}^{3}}-11{{\left( 1 \right)}^{2}}-9\left( 1 \right)+15 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x-1 \right)$. $\frac{2{{x}^{4}}+3{{x}^{3}}-11{{x}^{2}}-9x+15}{\left( x-1 \right)}=\left( 2x+5 \right)\left( {{x}^{2}}-3 \right)$ Thus, the polynomial can be expressed as $f\left( x \right)=\left( x-1 \right)\left( 2x+5 \right)\left( {{x}^{2}}-3 \right)$. Equate $f\left( x \right)=\left( x-1 \right)\left( 2x+5 \right)\left( {{x}^{2}}-3 \right)$ to zero. $\begin{align} & \left( x-1 \right)\left( 2x+5 \right)\left( {{x}^{2}}-3 \right)=0 \\ & x=-\frac{5}{2},1,\sqrt{3},-\sqrt{3} \end{align}$ The solution of the polynomial is $\left\{ -\frac{5}{2},1,\sqrt{3},-\sqrt{3} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.