Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 45

Answer

The roots of the polynomial are\[\left\{ -1,-2,3-\sqrt{13},3+\sqrt{13} \right\}\]

Work Step by Step

Consider the given polynomial $f\left( x \right)={{x}^{3}}-4{{x}^{2}}-7x+10$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 4,\pm 8$ $q=\pm 1$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm 8$ According to the Descartes’s rule of signs, the function $f\left( x \right)={{x}^{3}}-4{{x}^{2}}-7x+10$ has one sign change. Since the function $f\left( x \right)$ has one variations in sign, the function $f\left( x \right)$ has one positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)={{x}^{4}}-3{{x}^{3}}-20{{x}^{2}}-24x-8 \\ & f\left( -x \right)={{\left( -x \right)}^{4}}-3{{\left( -x \right)}^{3}}-20{{\left( -x \right)}^{2}}-24\left( -x \right)-8 \\ & ={{x}^{4}}+3{{x}^{3}}-20{{x}^{2}}+24x-8 \end{align}$ There are two variations in sign. Thus there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=-1$ as a root of the polynomial: $\begin{align} & f\left( x \right)={{x}^{4}}-3{{x}^{3}}-20{{x}^{2}}-24x-8 \\ & f\left( -1 \right)={{\left( -1 \right)}^{4}}-3{{\left( -1 \right)}^{3}}-20{{\left( -1 \right)}^{2}}-24\left( -1 \right)-8 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x+1 \right)$. $\frac{{{x}^{4}}-3{{x}^{3}}-20{{x}^{2}}-24x-8}{\left( x+1 \right)}=\left( x+2 \right)\left( {{x}^{2}}-6x-4 \right)$ Thus, the function can be expressed as $f\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( {{x}^{2}}-6x-4 \right)$. Equate $f\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( {{x}^{2}}-6x-4 \right)$ to zero. $\begin{align} & \left( x+1 \right)\left( x+2 \right)\left( {{x}^{2}}-6x-4 \right)=0 \\ & \left( x+1 \right)\left( x+2 \right)\left( x-\left( 3-\sqrt{13} \right) \right)\left( x-\left( 3+\sqrt{13} \right) \right)=0 \\ & x=-1,-2,3-\sqrt{13},3+\sqrt{13} \end{align}$ The solution of the polynomial is $\left\{ -1,-2,3-\sqrt{13},3+\sqrt{13} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.