Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 49

Answer

The roots of the polynomial are\[\left\{ -\frac{3}{4},1,i\sqrt{2},-i\sqrt{2} \right\}\]

Work Step by Step

Consider the given polynomial $f\left( x \right)=4{{x}^{4}}-{{x}^{3}}+5{{x}^{2}}-2x-6$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 3,\pm 6$ $q=\pm 1,\pm 2,\pm 4$ So, the possible rational zeros are: $\begin{align} & \text{Possible rational zero}=\frac{\text{Factor of}\left( -6 \right)}{\text{Factor of}\left( 4 \right)} \\ & =\frac{\pm 1,\pm 2,\pm 3,\pm 6}{\pm 1,\pm 2,\pm 4} \\ & =\pm 1,\pm 2,\pm 3,\pm 6,\pm \frac{1}{2},\pm \frac{1}{4},\pm \frac{3}{4},\pm \frac{3}{2} \end{align}$ According to the Descartes’ rule of signs, the function $f\left( x \right)=4{{x}^{4}}-{{x}^{3}}+5{{x}^{2}}-2x-6$ has three sign changes. Since the function $f\left( x \right)$ has three variations in sign, the function $f\left( x \right)$ has three or one positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=4{{x}^{4}}-{{x}^{3}}+5{{x}^{2}}-2x-6 \\ & f\left( -x \right)=4{{\left( -x \right)}^{4}}-{{\left( -x \right)}^{3}}+5{{\left( -x \right)}^{2}}-2\left( -x \right)-6 \\ & =4{{x}^{4}}+{{x}^{3}}+5{{x}^{2}}+2x-6 \end{align}$ There is only one variation in sign. Thus, there is 1 negative real zero. Test $x=1$ as a root of the polynomial: $\begin{align} & f\left( x \right)=4{{x}^{4}}-{{x}^{3}}+5{{x}^{2}}-2x-6 \\ & f\left( 1 \right)=4{{\left( 1 \right)}^{4}}-{{\left( 1 \right)}^{3}}+5{{\left( 1 \right)}^{2}}-2\left( 1 \right)-6 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x-1 \right)$. $\frac{4{{x}^{4}}-{{x}^{3}}+5{{x}^{2}}-2x-6}{\left( x-1 \right)}=\left( 4x+3 \right)\left( {{x}^{2}}+2 \right)$ Thus, function can be expressed as $f\left( x \right)=\left( x-1 \right)\left( 4x+3 \right)\left( {{x}^{2}}+2 \right)$. Equate $f\left( x \right)=\left( x-1 \right)\left( 4x+3 \right)\left( {{x}^{2}}+2 \right)$ to zero. $\begin{align} & \left( x-1 \right)\left( 4x+3 \right)\left( {{x}^{2}}+2 \right)=0 \\ & x=-\frac{3}{4},1,i\sqrt{2},-i\sqrt{2} \end{align}$ The solution of the polynomial is $\left\{ -\frac{3}{4},1,i\sqrt{2},-i\sqrt{2} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.