Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 47

Answer

The roots of the polynomial are\[\left\{ -\frac{1}{3},-1,2,3 \right\}\]

Work Step by Step

Consider the given polynomial $3{{x}^{4}}-11{{x}^{3}}-{{x}^{2}}+19x+6=0$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 3,\pm 6$ $q=\pm 1,\pm 2,\pm 3$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 3,\pm 6,\pm \frac{1}{2},\pm \frac{1}{3},\pm \frac{2}{3}$ According to the Descartes’s rule of signs, the function $3{{x}^{4}}-11{{x}^{3}}-{{x}^{2}}+19x+6=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-{{x}^{2}}+19x+6 \\ & f\left( -x \right)=3{{\left( -x \right)}^{4}}-11{{\left( -x \right)}^{3}}-{{\left( -x \right)}^{2}}+19\left( -x \right)+6 \\ & =3{{x}^{4}}+11{{x}^{3}}-{{x}^{2}}-19x+6 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=-1$ as a root of the polynomial: $\begin{align} & f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-{{x}^{2}}+19x+6 \\ & f\left( -1 \right)=3{{\left( -1 \right)}^{4}}-11{{\left( -1 \right)}^{3}}-{{\left( -1 \right)}^{2}}+19\left( -1 \right)+6 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x+1 \right)$. $\frac{3{{x}^{4}}-11{{x}^{3}}-{{x}^{2}}+19x+6}{\left( x+1 \right)}=\left( 3x+1 \right)\left( x-2 \right)\left( x-3 \right)$ Thus, the polynomial can be expressed as $f\left( x \right)=\left( x+1 \right)\left( 3x+1 \right)\left( x-2 \right)\left( x-3 \right)$. Equate $f\left( x \right)=\left( x+1 \right)\left( 3x+1 \right)\left( x-2 \right)\left( x-3 \right)$ to zero. $\begin{align} & \left( x+1 \right)\left( 3x+1 \right)\left( x-2 \right)\left( x-3 \right)=0 \\ & x=-\frac{1}{3},-1,2,3 \end{align}$ The solution of the polynomial is $\left\{ -\frac{1}{3},-1,2,3 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.