Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 43

Answer

The roots of the polynomial are\[\left\{ -1,-1,2-2i,2+2i \right\}\]

Work Step by Step

Consider the given polynomial ${{x}^{4}}-2{{x}^{3}}+{{x}^{2}}+12x+8=0$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 4,\pm 8$ $q=\pm 1$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm 8$ According to the Descartes’s rule of signs, the function ${{x}^{4}}-2{{x}^{3}}+{{x}^{2}}+12x+8=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)={{x}^{4}}-2{{x}^{3}}+{{x}^{2}}+12x+8 \\ & f\left( -x \right)={{\left( -x \right)}^{4}}-2{{\left( -x \right)}^{3}}+{{\left( -x \right)}^{2}}+12\left( -x \right)+8 \\ & ={{x}^{4}}+2{{x}^{2}}+{{x}^{2}}-12x+8 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=-1$ as a root of the polynomial: $\begin{align} & f\left( x \right)={{x}^{4}}-2{{x}^{3}}+{{x}^{2}}+12x+8 \\ & f\left( -1 \right)={{\left( -1 \right)}^{4}}-2{{\left( -1 \right)}^{3}}+{{\left( -1 \right)}^{2}}+12\left( -1 \right)+8 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by ${{\left( x+1 \right)}^{2}}$. $\frac{\left( {{x}^{4}}-2{{x}^{3}}+{{x}^{2}}+12x+8 \right)}{{{\left( x+1 \right)}^{2}}}={{x}^{2}}-4x+8$ Thus, the function can be expressed as $f\left( x \right)={{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4x+8 \right)$. Equate $f\left( x \right)={{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4x+8 \right)$ to zero. $\begin{align} & {{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4x+8 \right)=0 \\ & {{\left( x+1 \right)}^{2}}\left( {{x}^{2}}-4x+8 \right)=0 \\ & x=-1,-1,2-2i,2+2i \end{align}$ The solution of the polynomial is $\left\{ -1,-1,2-2i,2+2i \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.