Answer
The solution set of the polynomial is\[\frac{1}{2},-2,\sqrt{2},-\sqrt{2}\]
Work Step by Step
Consider the given polynomial $2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}-8x+8=0$.
Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial.
$p=\pm 1,\pm 2,\pm 4,\pm 8$
$q=\pm 1,\pm 2$
Calculate $\frac{p}{q}$.
$\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm 8,\pm \frac{1}{2}$
According to the Descartes’s rule of signs, the function $2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}-8x+8=0$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root.
Further, evaluate $f\left( -x \right):$
$-2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}+8x+8=0$
This polynomial changes the sign three times. Since the function $f\left( x \right)$ has three variations in sign, the function $f\left( x \right)$ has three or one positive real root.
Test $x=-2$ as a zero of the polynomial as:
$\begin{align}
& f\left( x \right)=2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}-8x+8 \\
& f\left( 2 \right)=2{{\left( -2 \right)}^{5}}+7{{\left( -2 \right)}^{4}}-18{{\left( -2 \right)}^{2}}-8\left( -2 \right)+8 \\
& =-64+112-72+16+8 \\
& =0
\end{align}$
Thus, $x+2$ is a factor of the equation. And we divide the polynomial by $x+2$:
$\begin{align}
& x+2\overset{2{{x}^{4}}+3{{x}^{3}}-6{{x}^{2}}-6x+4}{\overline{\left){\begin{align}
& 2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}-8x+8 \\
& \underline{2{{x}^{5}}+4{{x}^{4}}} \\
& 3{{x}^{4}}-18{{x}^{2}} \\
& \underline{3{{x}^{4}}+6{{x}^{3}}} \\
& \,\,\,\,\,-\,6{{x}^{3}}-18{{x}^{2}} \\
& \,\text{ }\underline{-6{{x}^{3}}-12{{x}^{2}}} \\
\end{align}}\right.}} \\
& \text{ -6}{{x}^{2}}-8x \\
& \text{ }\underline{-6{{x}^{2}}-12x} \\
& \text{ 4}x\text{+8} \\
& \text{ }\underline{4x+8} \\
& \text{ 0} \\
\end{align}$
Test $x=\frac{1}{2}$ as a zero of the polynomial as:
$\begin{align}
& f\left( x \right)=2{{x}^{5}}+7{{x}^{4}}-18{{x}^{2}}-8x+8=0 \\
& f\left( \frac{1}{2} \right)=2{{\left( \frac{1}{2} \right)}^{5}}+7{{\left( \frac{1}{2} \right)}^{4}}-18{{\left( \frac{1}{2} \right)}^{2}}-8\left( \frac{1}{2} \right)+8 \\
& =\frac{1}{16}+\frac{7}{16}-\frac{18}{4}-4+8 \\
& =0
\end{align}$
Thus, $x-\frac{1}{2}$ is a factor of the equation and we divide the equation by $x-\frac{1}{2}$.
$\begin{align}
& x-\frac{1}{2}\overset{2{{x}^{3}}+4{{x}^{2}}-4x-8}{\overline{\left){\begin{align}
& 2{{x}^{4}}+3{{x}^{3}}-6{{x}^{2}}-6x+4 \\
& \underline{2{{x}^{4}}-{{x}^{3}}} \\
& 4{{x}^{3}}-6{{x}^{2}} \\
& \underline{4{{x}^{3}}-2{{x}^{2}}} \\
& \,\,\,\,\,-\,4{{x}^{2}}-6x \\
& \,\text{ }\underline{-4{{x}^{2}}+2x} \\
\end{align}}\right.}} \\
& \text{ -8}x+4 \\
& \text{ }\underline{-8x+4} \\
& \text{ 4}x\text{+8} \\
& \text{ }\underline{4x+8} \\
& \text{ 0} \\
\end{align}$
Thus, the polynomial can be expressed as:
$\begin{align}
& \left( x+2 \right)\left( x-\frac{1}{2} \right)\left( 2{{x}^{3}}+4{{x}^{2}}-4x-8 \right)=\left( x+2 \right)\left( x-\frac{1}{2} \right)\left( 2{{x}^{2}}\left( x+2 \right)-4\left( x+2 \right) \right) \\
& =\left( x+2 \right)\left( x-\frac{1}{2} \right)\left( x+2 \right)\left( 2{{x}^{2}}-4 \right) \\
& =\left( x+2 \right)\left( x-\frac{1}{2} \right)\left( x+2 \right)\left( x-\sqrt{2} \right)\left( x+\sqrt{2} \right)
\end{align}$
Equate the expression to zero.
$\begin{align}
& x+2=0 \\
& x=-2 \\
& x-\frac{1}{2}=0 \\
& x=\frac{1}{2}
\end{align}$
And,
$\begin{align}
& x-\sqrt{2}=0 \\
& x=\sqrt{2} \\
& x+\sqrt{2}=0 \\
& x=-\sqrt{2}
\end{align}$
The roots of the provided function is $\frac{1}{2},-2,\sqrt{2},-\sqrt{2}$.