Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 378: 50

Answer

The roots of the polynomial are\[\left\{ 4,\frac{2}{3},-\frac{1}{2}+\frac{\sqrt{3}i}{2},-\frac{1}{2}-\frac{\sqrt{3}i}{2} \right\}\]

Work Step by Step

Consider the given polynomial $f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-3{{x}^{2}}-6x+8$. Determine values of p and q where p are the factors of the constant in the polynomial and q are the factors of the leading coefficient of the polynomial. $p=\pm 1,\pm 2,\pm 4,\pm 8$ $q=\pm 1,\pm 2,\pm 3$ Calculate $\frac{p}{q}$. $\frac{p}{q}=\pm 1,\pm 2,\pm 4,\pm 8,\pm \frac{1}{2},\pm \frac{1}{3},\pm \frac{2}{3},\pm \frac{4}{3},\pm \frac{8}{3}$ According to the Descartes’s rule of signs, the function $f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-3{{x}^{2}}-6x+8$ has two sign changes. Since the function $f\left( x \right)$ has two variations in sign, the function $f\left( x \right)$ has two or zero positive real root. Further, evaluate $f\left( -x \right):$ $\begin{align} & f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-3{{x}^{2}}-6x+8 \\ & f\left( -x \right)=3{{\left( -x \right)}^{4}}-11{{\left( -x \right)}^{3}}-3{{\left( -x \right)}^{2}}-6\left( -x \right)+8 \\ & =3{{x}^{4}}+11{{x}^{3}}-3{{x}^{2}}+6x+8 \end{align}$ There are two variations in sign. Thus, there are 2 negative real zeros or $2-2=0$ negative real zeros. Test $x=4$ as a root of the polynomial: $\begin{align} & f\left( x \right)=3{{x}^{4}}-11{{x}^{3}}-3{{x}^{2}}-6x+8 \\ & f\left( 4 \right)=3{{\left( 4 \right)}^{4}}-11{{\left( 4 \right)}^{3}}-3{{\left( 4 \right)}^{2}}-6\left( 4 \right)+8 \\ & =0 \end{align}$ Divide the equation $f\left( x \right)$ by $\left( x-4 \right)$. $\frac{3{{x}^{4}}-11{{x}^{3}}-3{{x}^{2}}-6x+8}{\left( x-4 \right)}=\left( 3x-2 \right)\left( {{x}^{2}}+x+1 \right)$ Thus, the polynomial can be expressed as $f\left( x \right)=\left( x-4 \right)\left( 3x-2 \right)\left( {{x}^{2}}+x+1 \right)$. Equate $f\left( x \right)=\left( x-4 \right)\left( 3x-2 \right)\left( {{x}^{2}}+x+1 \right)$ to zero. $\begin{align} & \left( x-4 \right)\left( 3x-2 \right)\left( {{x}^{2}}+x+1 \right)=0 \\ & \left( x-4 \right)\left( 3x-2 \right)\left( {{\left( x+\frac{1}{2} \right)}^{2}}+\frac{3}{4} \right)=0 \\ & x=4,\frac{2}{3},-\frac{1}{2}+\frac{\sqrt{3}i}{2},-\frac{1}{2}-\frac{\sqrt{3}i}{2} \end{align}$ The solution of the polynomial is $\left\{ 4,\frac{2}{3},-\frac{1}{2}+\frac{\sqrt{3}i}{2},-\frac{1}{2}-\frac{\sqrt{3}i}{2} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.