Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 55

Answer

$\dfrac{(x-2)^2}{25}+\dfrac{(y+2)^2}{21}=1$ See graph

Work Step by Step

We are given the ellipse: Center: $(2,-2)$ Focus: $(4,-2)$ Vertex: $(7,-2)$ Because the $y$-coordinates of the vertex, center, and focus are the same, the ellipse has the equation: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$ Determine $h,k$ using the center: $(h,k)=(2,-2)$ $h=2$ $k=-2$ Determine $a$ using the vertex: $(h+a,k)=(7,-2)$ $(2+a,-2)=(7,-2)$ $2+a=7$ $a=5$ Determine $c$ using the focus: $(h+c,k)=(4,-2)$ $(2+c,-2)=(4,-2)$ $2+c=4$ $c=2$ Determine $b$: $a^2=b^2+c^2$ $b^2=a^2-c^2$ $b^2=5^2-2^2$ $b^2=21$ $b=\sqrt{21}$ The equation of the ellipse is: $\dfrac{(x-2)^2}{5^2}+\dfrac{(y+2)^2}{(\sqrt{21})^2}=1$ $\dfrac{(x-2)^2}{25}+\dfrac{(y+2)^2}{21}=1$ The center is: $(h,k)=(2,-2)$ Determine the vertices and co-vertices: $(h-a,k)=(2-5,-2)=(-3,-2)$ $(h+a,k)=(7,-2)$ $h,k-b)=(2,-2-\sqrt{21})$ $h,k+b)=(2,-2+\sqrt{21})$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.