Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 51

Answer

Center: $(1,-2)$ Foci: $(1,-2-\sqrt 5),(1,-2+\sqrt 5)$ Vertices: $(1,-5),(1,1)$ See graph

Work Step by Step

We are given the ellipse: $9x^2+4y^2-18x+16y-11=0$ Put the equation in standard form: $9(x^2-2x+1)-9+4(y^2+4y+4)-16-11=0$ $9(x-1)^2+4(y+2)^2=36$ $\dfrac{9(x-1)^2}{36}+\dfrac{4(y+2)^2}{36}=1$ $\dfrac{(x-1)^2}{4}+\dfrac{(y+2)^2}{9}=1$ The equation is in the form: $\dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1$ Identify $h,k,a,b$: $h=1$ $k=-2$ $a^2=9\Rightarrow a=\sqrt{9}=3$ $b^2=4\Rightarrow b=\sqrt 4=2$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=9-4$ $c^2=5$ $c=\sqrt 5$ Determine the center: $(h,k)=(1,-2)$ Determine the foci: $(h,k-c)=(1,-2-\sqrt 5)$ $(h,k+c)=(1,-2+\sqrt 5)$ Determine the vertices: $(h,k-a)=(1,-2-3)=(1,-5)$ $(h,k+a)=(1,-2+3)=(1,1)$ Determine the co-vertices: $(h-b,k)=(1-2,-2)=(-1,-2)$ $(h+b,k)=(1+2,-2)=(3,-2)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.