Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 47

Answer

Center: $(-2,1)$ Foci: $(-2-\sqrt 3,1),(-2+\sqrt 3,1)$ Vertices: $(-4,1),(0,1)$ See graph

Work Step by Step

We are given the ellipse: $x^2+4x+4y^2-8y+4=0$ Put the equation in standard form: $(x^2+4x+4)-4+4(y^2-2y+1)-4+4=0$ $(x+2)^2+4(y-1)^2=4$ $\dfrac{(x+2)^2}{4}+\dfrac{4(y-1)^2}{4}=1$ $\dfrac{(x+2)^2}{4}+\dfrac{(y-1)^2}{1}=1$ The equation is in the form: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$ Identify $h,k,a,b$: $h=-2$ $k=1$ $a^2=4\Rightarrow a=\sqrt 4=2$ $b^2=1\Rightarrow b=1$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=4-1$ $c^2=3$ $c=\sqrt 3$ Determine the center: $(h,k)=(-2,1)$ Determine the foci: $(h-c,k)=(-2-\sqrt 3,1)$ $(h+c,k)=(-2+\sqrt 3,1)$ Determine the vertices: $(h-a,k)=(-2-2,1)=(-4,1)$ $(h+a,k)=(-2+2,1)=(0,1)$ Determine the $y$-intercepts: $(h,k-b)=(-2,1-1)=(-2,0)$ $(h,k+b)=(-2,1+1)=(-2,2)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.