Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 31

Answer

$\dfrac{x^2}{9}+\dfrac{y^2}{5}=1$ See graph

Work Step by Step

We are given the ellipse: Foci: $(-2,0),(2,0)$ Length of the major axis: $6$ Because the $y$-coordinates of the foci are the same, the ellipse has the equation: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$ Determine $a$ using the length of the major axis: $2a=6$ $a=3$ Determine $h,k,c$ from the foci: $(h-c,k)=(-2,0)\Rightarrow h-c=-2,k=0$ $(h+c,k)=(2,0)\Rightarrow h+c=2$ $\begin{cases} h-c=-2\\ h+c=2 \end{cases}$ $h-c+h+c=-2+2$ $2h=0$ $h=0$ $h+c=2$ $0+c=2$ $c=2$ Determine $b$: $a^2=b^2+c^2$ $b^2=a^2-c^2$ $b^2=3^2-2^2$ $b^2=5$ $b=\sqrt{5}$ The equation of the ellipse is: $\dfrac{x^2}{3^2}+\dfrac{y^2}{(\sqrt 5)^2}=1$ $\dfrac{x^2}{9}+\dfrac{y^2}{5}=1$ The center is: $(h,k)=(0,0)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.