Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 52

Answer

Center: $(-3,1)$ Foci: $(-3-2\sqrt 2,1),(-3+2\sqrt 2,1)$ Vertices: $(-6,1),(0,1)$ See graph

Work Step by Step

We are given the ellipse: $x^2+9y^2+6x-18y+9=0$ Put the equation in standard form: $(x^2+6x+9)-9+9(y^2-2y+1)-9+9=0$ $(x+3)^2+9(y-1)^2=9$ $\dfrac{(x+3)^2}{9}+\dfrac{9(y-1)^2}{9}=1$ $\dfrac{(x+3)^2}{9}+\dfrac{(y-1)^2}{1}=1$ The equation is in the form: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$ Identify $h,k,a,b$: $h=-3$ $k=1$ $a^2=9\Rightarrow a=\sqrt{9}=3$ $b^2=1\Rightarrow b=1$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=9-1$ $c^2=8$ $c=\sqrt 8=2\sqrt 2$ Determine the center: $(h,k)=(-3,1)$ Determine the foci: $(h-c,k)=(-3-2\sqrt 2,1)$ $(h+c,k)=(-3+2\sqrt 2,1)$ Determine the vertices: $(h-a,k)=(-3-3,1)=(-6,1)$ $(h+a,k)=(-3+3,1)=(0,1)$ Determine the $y$-intercepts: $(h,k-b)=(-3,1-1)=(-3,0)$ $(h,k+b)=(-3,1+1)=(-3,2)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.