Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 50

Answer

Center: $(-1,1)$ Foci: $(-1,0),(-1,2)$ Vertices: $(-1,-1),(-1,3)$ See graph

Work Step by Step

We are given the ellipse: $4x^2+3y^2+8x-6y=5$ Put the equation in standard form: $4(x^2+2x+1)-4+3(y^2-2y+1)-3=5$ $4(x+1)^2+3(y-1)^2=12$ $\dfrac{4(x+1)^2}{12}+\dfrac{3(y-1)^2}{12}=1$ $\dfrac{(x+1)^2}{3}+\dfrac{(y-1)^2}{4}=1$ The equation is in the form: $\dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1$ Identify $h,k,a,b$: $h=-1$ $k=1$ $a^2=4\Rightarrow a=\sqrt{4}=2$ $b^2=3\Rightarrow b=\sqrt 3$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=4-3$ $c^2=1$ $c=1$ Determine the center: $(h,k)=(-1,1)$ Determine the foci: $(h,k-c)=(-1,1-1)=(-1,0)$ $(h,k+c)=(-1,1+1)=(-1,2)$ Determine the vertices: $(h,k-a)=(-1,1-2)=(-1,-1)$ $(h,k+a)=(-1,1+2)=(-1,3)$ Determine the co-vertices: $(h-b,k)=(-1-\sqrt 3,1)$ $(h+b,k)=(-1+\sqrt 3,1)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.