Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 17

Answer

Vertices: $(-5,0),(5,0)$ Foci: $(-\sqrt{21},0),(\sqrt{21},0)$ See graph

Work Step by Step

We are given the ellipse: $\dfrac{x^2}{25}+\dfrac{y^2}{4}=1$ The equation is in the form: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$ Determine $h,k,a,b,c$: $h=0$ $k=0$ $a^2=25\Rightarrow a=\sqrt{25}=5$ $b^2=4\Rightarrow b=\sqrt 4=2$ $c^2=a^2-b^2=25-4=21$ $c=\sqrt{21}$ The center is: $(h,k)=(0,0)$ Find the vertices: $(h-a,k)=(0-5,0)=(-5,0)$ $(h+a,k)=(0+5,0)=(5,0)$ Find the foci: $(h-c,k)=(0-\sqrt{21},0)=(-\sqrt{21},0)$ $(h+c,k)=(0+\sqrt{21},0)=(\sqrt{21},0)$ Use the value of $b=2$ to find the two points above and below the center: $(h,k-b)=(0,0-2)=(0,-2)$ $(h,k+b)=(0,0+2)=(0,2)$ Plot the center, the vertices, the two points above and below the center, and the foci. Then, graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.