Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 24

Answer

Vertices: $(0,-3),(0,3)$ Foci: $(0,-\sqrt{5}),(0,\sqrt{5})$ See graph

Work Step by Step

We are given the ellipse: $4y^2+9x^2=36$ Put the equation in standard form: $\dfrac{4y^2}{36}+\dfrac{9x^2}{36}=1$ $\dfrac{x^2}{4}+\dfrac{y^2}{9}=1$ The equation is in the form: $\dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1$ Determine $h,k,a,b,c$: $h=0$ $k=0$ $a^2=9\Rightarrow a=\sqrt{9}=3$ $b^2=4\Rightarrow b=\sqrt 4=2$ $c^2=a^2-b^2=9-4=5$ $c=\sqrt{5}$ The center is: $(h,k)=(0,0)$ Find the vertices: $(h,k-a)=(0,0-3)=(0,-3)$ $(h,k+a)=(0,0+3)=(0,3)$ Find the foci: $(h,k-c)=(0,0-\sqrt{5})=(0,-\sqrt{5})$ $(h,k+c)=(0,0+\sqrt{5})=(0,\sqrt{5})$ Use the value of $b=2$ to find the two points to the left and right of the center: $(h-b,k)=(0-2,0)=(-2,0)$ $(h+b,k)=(0+2,0)=(2,0)$ Plot the center, the vertices, the two points to the left and the right of the center, and the foci. Then, graph the ellipse: Vertices: $(0,-3),(0,3)$ Foci: $(0,-\sqrt{5}),(0,\sqrt{5})$ See graph
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.