Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 46

Answer

Center: $(3,-2)$ Foci: $(3,-6),(3,2)$ Vertices: $(3,-2-3\sqrt 2),(3,-2+3\sqrt 2)$ See graph

Work Step by Step

We are given the ellipse: $9(x-3)^2+(y+2)^2=18$ Put the equation in standard form: $\dfrac{9(x-3)^2}{18}+\dfrac{(y+2)^2}{18}=1$ $\dfrac{(x-3)^2}{2}+\dfrac{(y+2)^2}{18}=1$ The equation is in the form: $\dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1$ Identify $h,k,a,b$: $h=3$ $k=-2$ $a^2=18\Rightarrow a=\sqrt{18}=3\sqrt 2$ $b^2=2\Rightarrow b=\sqrt 2$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=18-2$ $c^2=16$ $c=\sqrt {16}=4$ Determine the center: $(h,k)=(3,-2)$ Determine the foci: $(h,k-c)=(3,-2-4)=(3,-6)$ $(h,k+c)=(3,-2+4)=(3,2)$ Determine the vertices: $(h,k-a)=(3,-2-3\sqrt 2)$ $(h,k+a)=(3,-2+3\sqrt 2)$ Determine the $x$-intercepts: $(h-b,k)=(3-\sqrt 2,-2)$ $(h+b,k)=(3+\sqrt 2,-2)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.