Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - 10.3 The Ellipse - 10.3 Assess Your Understanding - Page 657: 53

Answer

Center: $(0,-2)$ Foci: $(0,-2-\sqrt 3),(0,-2+\sqrt 3)$ Vertices: $(0,-4),(0,0)$ See graph

Work Step by Step

We are given the ellipse: $4x^2+y^2+4y=0$ Put the equation in standard form: $4x^2+(y^2+4y+4)-4=0$ $4x^2+(y+2)^2=4$ $\dfrac{4x^2}{4}+\dfrac{(y+2)^2}{4}=1$ $\dfrac{x^2}{1}+\dfrac{(y+2)^2}{4}=1$ The equation is in the form: $\dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1$ Identify $h,k,a,b$: $h=0$ $k=-2$ $a^2=4\Rightarrow a=\sqrt{4}=2$ $b^2=1\Rightarrow b=1$ Determine $c$: $a^2=b^2+c^2$ $c^2=a^2-b^2$ $c^2=4-1$ $c^2=3$ $c=\sqrt 3$ Determine the center: $(h,k)=(0,-2)$ Determine the foci: $(h,k-c)=(0,-2-\sqrt 3)$ $(h,k+c)=(0,-2+\sqrt 3)$ Determine the vertices: $(h,k-a)=(0,-2-2)=(0,-4)$ $(h,k+a)=(0,-2+2)=(0,0)$ Determine the co-vertices: $(h-b,k)=(0-1,-2)=(-1,-2)$ $(h+b,k)=(0+1,-2)=(1,-2)$ Graph the ellipse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.