Answer
$1\frac{5}{12}$
Work Step by Step
Convert each mixed number to an improper fraction to obtain:
$=\left(\dfrac{4\cdot 3 + 3}{4}\right) - \left(\dfrac{3\cdot 2 + 1}{3}\right)
\\=\dfrac{15}{4} - \dfrac{7}{3}$
The fractions are not similar since they have different fractions.
Make the fractions similar using their LCD of $12$.
$\dfrac{15}{4} - \dfrac{7}{3}
\\= \dfrac{15\color{blue}{(3)}}{4\color{blue}{(3)}}-\dfrac{7\color{blue}{(4)}}{3\color{blue}{(4)}}
\\=\dfrac{45}{12}-\dfrac{28}{12}$
Now that the fractions are similar, subtract the numerators and copy the denominator to obtain:
$=\dfrac{45-28}{12}
\\=\dfrac{17}{12}$
Convert to a mixed number to obtain:
$=\dfrac{12+5)}{12}
\\=\dfrac{12}{12} + \dfrac{5}{12}
\\=1+\left(\frac{5}{12}\right)
\\=1\frac{5}{12}$