Answer
$4\frac{5}{12}$
Work Step by Step
Convert each mixed number to an improper fraction to obtain:
$=\left(\dfrac{3\cdot 2 + 2}{3}\right) + \left(\dfrac{4\cdot 1 + 3}{4}\right)
\\=\dfrac{8}{3} + \dfrac{7}{4}$
The fractions are not similar since they have different fractions.
Make the fractions similar using their LCD of $12$.
$\dfrac{8}{3} + \dfrac{7}{4}
\\= \dfrac{8\color{blue}{(4)}}{3\color{blue}{(4)}}+\dfrac{7\color{blue}{(3)}}{4\color{blue}{(3)}}
\\=\dfrac{32}{12}+\dfrac{21}{12}$
Now that the fractions are similar, add the numerators and copy the denominator to obtain:
$=\dfrac{32+21}{12}
\\=\dfrac{53}{12}$
Convert to a mixed number to obtain:
$=\dfrac{48+5}{12}
\\=\dfrac{48}{12} + \dfrac{5}{12}
\\=4\frac{5}{12}$