Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 5 - Number Theory and the Real Number System - 5.3 The Rational Numbers - Exercise Set 5.3 - Page 285: 102

Answer

$-\dfrac{1}{2}$

Work Step by Step

Simplify the complex fraction to obtain: \begin{align*} \require{cancel} &=\frac{\frac{17}{25}}{\frac{3}{5}-\frac{20}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\ &=\frac{\frac{17}{25}}{\frac{3-20}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\ &=\frac{\frac{17}{25}}{\frac{-17}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\ &=\left(\frac{17}{25} \times \frac{5}{-17}\right)\div \frac{1}{5}+\frac{1}{2}\\\\ &=\left(\frac{\cancel{17}}{\cancel{25}5} \times \frac{\cancel{5}}{-\cancel{17}}\right)\div \frac{1}{5}+\frac{1}{2}\\\\ &=-\frac{1}{5}\div \frac{1}{5}+\frac{1}{2}\\\\ \end{align*} Perform the division using the rule $\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}$ to obtain: \begin{align*} &=-\frac{1}{5}\times \frac{5}{1}+\frac{1}{2}\\\\ &=-\frac{1}{\cancel{5}}\times \frac{\cancel{5}}{1}+\frac{1}{2}\\\\ &=-1+\frac{1}{2}\\\\ &=-\frac{2}{2}+\frac{1}{2}\\\\ &=-\frac{1}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.