Answer
$-\dfrac{1}{2}$
Work Step by Step
Simplify the complex fraction to obtain:
\begin{align*}
\require{cancel}
&=\frac{\frac{17}{25}}{\frac{3}{5}-\frac{20}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\
&=\frac{\frac{17}{25}}{\frac{3-20}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\
&=\frac{\frac{17}{25}}{\frac{-17}{5}}\div \frac{1}{5}+\frac{1}{2}\\\\
&=\left(\frac{17}{25} \times \frac{5}{-17}\right)\div \frac{1}{5}+\frac{1}{2}\\\\
&=\left(\frac{\cancel{17}}{\cancel{25}5} \times \frac{\cancel{5}}{-\cancel{17}}\right)\div \frac{1}{5}+\frac{1}{2}\\\\
&=-\frac{1}{5}\div \frac{1}{5}+\frac{1}{2}\\\\
\end{align*}
Perform the division using the rule $\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}$ to obtain:
\begin{align*}
&=-\frac{1}{5}\times \frac{5}{1}+\frac{1}{2}\\\\
&=-\frac{1}{\cancel{5}}\times \frac{\cancel{5}}{1}+\frac{1}{2}\\\\
&=-1+\frac{1}{2}\\\\
&=-\frac{2}{2}+\frac{1}{2}\\\\
&=-\frac{1}{2}
\end{align*}