Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 5 - Number Theory and the Real Number System - 5.3 The Rational Numbers - Exercise Set 5.3 - Page 285: 101

Answer

$-1\frac{1}{36}$

Work Step by Step

Simplify the complex fraction to obtain: \begin{align*} \require{cancel} &=\frac{\frac{7}{9}-\frac{27}{9}}{\frac{5}{6}}\div \frac{3}{2}+\frac{3}{4}\\\\ &=\frac{\frac{7-27}{9}}{\frac{5}{6}}\div \frac{3}{2}+\frac{3}{4}\\\\ &=\frac{\frac{-20}{9}}{\frac{5}{6}}\div \frac{3}{2}+\frac{3}{4}\\\\ &=\left(\frac{-20}{9} \times \frac{6}{5}\right)\div \frac{3}{2}+\frac{3}{4}\\\\ &=\left(\frac{-\cancel{20}4}{\cancel{9}3} \times \frac{\cancel{6}2}{\cancel{5}}\right)\div \frac{3}{2}+\frac{3}{4}\\\\ &=\frac{-4(2)}{3}\div \frac{3}{2}+\frac{3}{4}\\\\ &=\frac{-8}{3}\div \frac{3}{2}+\frac{3}{4}\\\\ \end{align*} Perform the division using the rule $\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}$ to obtain: \begin{align*} &=\frac{-8}{3} \times \frac{2}{3}+\frac{3}{4}\\\\ &=\frac{-8(2)}{3(3)}+\frac{3}{4}\\\\ &=\frac{-16}{9}+\frac{3}{4}\\\\ &=\frac{-16(4)}{9(4)}+\frac{3(9)}{4(9)}\\\\ &=\frac{-64}{36}+\frac{27}{36}\\\\ &=\frac{-64+27}{36}\\\\ &=-\frac{37}{36}\\\\ &=-1\frac{1}{36} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.