University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 5

Answer

$\frac{cos^{3}x}{3}-cos x+C$

Work Step by Step

$\int sin^{3}xdx= \int(1-cos^{2}x)sin x dx$ Plug in: t= cos x, so that $dx= -\frac{1}{sinx}dt$ Therefore, $\int sin^{3}xdx= \int(1-t^{2})sinx\times\frac{-1}{sinx}dt$ $=\int (t^{2}-1)dt= \int t^{2}dt-\int 1dt$ $=\frac{t^{3}}{3}-t+C$ Undoing substitution, we obtain $\int sin^{3}xdx=\frac{cos^{3}x}{3}-cos x+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.