University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 19

Answer

$$\int16\sin^2x\cos^2xdx=\frac{4x-\sin4x}{2}+C$$

Work Step by Step

$$A=\int16\sin^2x\cos^2xdx$$ $$A=\int(4\sin x\cos x)^2dx$$ Recall the identity: $2\sin x\cos x=\sin2x$ $$A=\int(2\sin2x)^2dx=4\int(\sin2x)^2dx$$ This is an example of Case 3, so we need to rewrite $$(\sin2x)^2=\frac{1-\cos4x}{2}$$ $$A=4\int\frac{1-\cos4x}{2}dx$$ $$A=4\Big(\frac{x-\frac{1}{4}\sin4x}{2}\Big)+C$$ $$A=\frac{4x-\sin4x}{2}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.