University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 13

Answer

$\frac{sin 2x}{4}+\frac{x}{2}+C$

Work Step by Step

$\int cos^{2}xdx= \int cos x cos xdx$ Applying integration by parts, we get $\int cos x cos xdx$ $=cos x sin x-\int(-sin x\times sin x)dx$ $=cos xsin x+ \int sin^{2}xdx$ $=cos xsinx+\int(1-cos^{2}x)dx$ $= cosxsinx+\int 1dx- \int cos^{2}xdx$ Adding $\int cos^{2}xdx$ to both sides of the equation, we have $2\int cos^{2}xdx= cosxsinx+x+C$ $⇒\int cos^{2}xdx= \frac{1}{2}(cosxsinx+x)+C$ As $cosx sinx = \frac{sin2x}{2}$, $\int cos^{2}xdx= \frac{sin 2x}{4}+\frac{x}{2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.