University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 17

Answer

$$\int^{\pi}_08\sin^4xdx=3\pi$$

Work Step by Step

$$A=\int^{\pi}_08\sin^4xdx$$ This is Case 3, so we need to find a way to rewrite $$(\sin^2x)^k=\Big(\frac{1-\cos2x}{2}\Big)^k$$ We have, $$A=\int^\pi_08(\sin^2x)^2dx$$ $$A=\int^\pi_08\Big(\frac{1-\cos2x}{2}\Big)^2dx$$ $$A=\int^\pi_02(1-\cos2x)^2dx$$ $$A=2\int^\pi_0(1-2\cos2x+\cos^22x)dx$$ $$A=2\Big(x-\sin2x\Big)\Big]^\pi_0+2\int^\pi_0\cos^22xdx$$ $$A=2\Big(\pi-\sin2\pi-0\Big)+2\int^\pi_0\cos^22xdx$$ $$A=2\pi+2\int^\pi_0\cos^22xdx$$ The integral is again an example of Case 3, so we would rewrite $$\cos^22x=\frac{1+\cos4x}{2}$$ $$A=2\pi+2\int^\pi_0\frac{1+\cos4x}{2}dx$$ $$A=2\pi+2\Big(\frac{x}{2}+\frac{1}{8}\sin4x\Big)\Big]^\pi_0$$ $$A=2\pi+2\Big(\frac{\pi}{2}+\frac{\sin4\pi}{8}-0\Big)$$ $$A=2\pi+2\Big(\frac{\pi}{2}\Big)=3\pi$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.