University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 26

Answer

$$\int^{\pi}_0\sqrt{1-\cos^2\theta}d\theta=2$$

Work Step by Step

$$A=\int^{\pi}_0\sqrt{1-\cos^2\theta}d\theta$$ Use the identity $$1-\cos^2\theta=\sin^2\theta$$ That means $$A=\int^{\pi}_0\sqrt{\sin^2\theta}d\theta$$ $$A=\int^{\pi}_0|\sin \theta|d\theta$$ We have $\sin\theta\ge0$ on $[0,\pi]$. Therefore, $$A=\int^{\pi}_0\sin \theta d\theta$$ $$A=-\cos\theta\Big]^{\pi}_0$$ $$A=-(\cos\pi-\cos0)$$ $$A=-(-1-1)=2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.