University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 4

Answer

$$\int\sin^42x\cos2xdx=\frac{(\sin 2x)^5}{10}+C$$

Work Step by Step

$$A=\int\sin^42x\cos2xdx$$ Take $a= 2x$, which means $$da=2dx$$ $$dx=\frac{1}{2}da$$ Therefore, $$A=\frac{1}{2}\int\sin^4a\cos ada$$ Take $u=\sin a$, we have $$du=\cos ada$$ So, $$A=\frac{1}{2}\int u^4du$$ $$A=\frac{1}{2}\times\frac{u^5}{5}+C=\frac{u^5}{10}+C$$ $$A=\frac{(\sin 2x)^5}{10}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.