University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 34

Answer

$$\int\sec x\tan^2xdx=\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln|\sec x+\tan x|+C$$

Work Step by Step

$$A=\int\sec x\tan^2xdx$$ $$A=\int\sec x(\sec^2x-1)dx$$ $$A=\int\sec^3xdx-\int\sec xdx$$ $$A=I-\ln|\sec x+\tan x|$$ So we have $$I=\int\sec^3xdx$$ To calculate $I$, we use Integration by Parts method. Set $u=\sec x$ and $dv=\sec^2xdx$ That means $du=\sec x\tan xdx$ and $v=\tan x$ Therefore, $$I=\sec x\tan x-\int\sec x\tan^2xdx$$ Now apply this back to $A$: $$A=\sec x\tan x-\int\sec x\tan^2xdx-\ln|\sec x+\tan x|$$ We see that the integral $\int\sec x\tan^2xdx$ is exactly the given problem, so $$A=\sec x\tan x-A-\ln|\sec x+\tan x|$$ $$2A=\sec x\tan x-\ln|\sec x+\tan x|+C$$ $$A=\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln|\sec x+\tan x|+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.