University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 434: 12

Answer

$$\int\cos^32x\sin^52xdx=-\frac{6(\cos2x)^4-8(\cos2x)^6+3(\cos2x)^8}{48}+C$$

Work Step by Step

$$A=\int\cos^32x\sin^52xdx$$ $$A=\frac{1}{2}\int\cos^32x\sin^52xd(2x)$$ We set $a=2x$. $$A=\frac{1}{2}\int\cos^3a\sin^5ada$$ Following the integral form $\int\sin^mx\cos^nxdx$, we would apply Case 1 here, where $m=5$ and $n=3$. $$A=\frac{1}{2}\int\cos^3a\sin^4a(\sin ada)$$ $$A=-\frac{1}{2}\int\cos^3a(1-\cos^2a)^2d(\cos a)$$ We set $u=\cos a$. $$A=-\frac{1}{2}\int u^3(1-u^2)^2du$$ $$A=-\frac{1}{2}\int u^3(1-2u^2+u^4)du$$ $$A=-\frac{1}{2}\int(u^3-2u^5+u^7)du$$ $$A=-\frac{1}{2}\Big(\frac{u^4}{4}-\frac{u^6}{3}+\frac{u^8}{8}\Big)+C$$ $$A=-\frac{1}{2}\Big(\frac{6u^4-8u^6+3u^8}{24}\Big)+C$$ $$A=-\frac{6u^4-8u^6+3u^8}{48}+C$$ $$A=-\frac{6(\cos2x)^4-8(\cos2x)^6+3(\cos2x)^8}{48}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.